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This paper presents an original method, using finite-difference approximations, for 
solving problems of stress-wave propagation in an elastic bar with discontinuities. The 
method, which is also applicable to similar problems in optical, acoustical, and electrical 
transmission lines, is simple and amenable to hand computation. With a computer, 
cases involving hundreds of discontinuities, as well as multiple-reflection problems 
with randomly related transit-time intervals, can be handled with ease. The validity 
and versatility of the method are demonstrated by solving two illustrative examples; 
results are shown to be in good agreement with corresponding analytical and experi- 
mental results. 

The transmission and reflection of stress waves in an elastic bar with 
discontinuities have been extensively studied [l-7]. Numerous methods, ranging 
from simple graphical to sophisticated computer approaches, are available for 
describing these phenomena. Most of these are based on the ray-tracing method 
of optics; every discontinuity sets up a series of reflected and transmitted amplitudes, 
which are followed individually through the system. This paper presents a new 
approach using finite differences. 

STATEMENT OF PROBLEM 

It is desired to solve the initial-and-boundary-value problem related to an 
elastic bar composed of axially symmetric sections of different material properties 
and cross-sectional areas, as shown in Fig. 1. 

The mathematical statement of the problem is as follows. The governing 
equation is 

sT(x, t)/3t2 = c2(i%(x, r)/ax2) (1) 
* This work was supported in part by the U.S. Atomic Energy Commission and by the U.S. 
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FIG. 1. Bar with discontinuities. 

where 0 < x < x1, x1 < x < xz ,..., xkel < x < L and t > 0. The initial 
conditions are 

4x, 0) =&I (2) 

h(x, oyat = g(x) (3) 

where 0 < x < x1, x1 < x < xz ,..., xlcml < x < L. The boundary conditions 
are 

(1) the prescribed end conditions: 

for t > 0 
(4) 

(5) 

(2) the conditions for continuous displacements and forces at the interfaces, 

+4-o , 0 = +i+ll 7 t) (6) 

A4%0, 0 = 4+dXi+o , 0 (7) 

where i = 1, 2 ,..., k - 1 and t 3 0. 

THEORY 

The finite-difference method is a powerful tool in solving initial-and-boundary- 
value problems. The key to a successful solution lies in satisfying the criteria of 
stability and convergence [El. The difference solution to the classical wave equation, 
a second-order, hyperbolic, partial differential equation, is well known. There has 
been no previous difference solution, however, to the title problem, which involves 
a mixed boundary condition related to the interface of a discontinuous bar. 
Though the problem is here limited to stress waves in solids, the method applies 
equally well in other fields where similar governing equations and boundary 
conditions prevail. 

In the application presented here, two main explicit difference schemes are 
used, one for the interior points of each section of the bar and one for the interface 
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boundaries between sections. At the bar ends, where stresses are prescribed, no 
computations are required. 

In this section, the difference scheme for the interior points is reviewed briefly, 
and the scheme for the interface boundaries is derived in detail. 

Interior Points 

The following relations are needed for deriving the wave equation (1): 

(1) Hooke’s law 
u(x, t) = E E(X, t), 

(2) definition of strain 

aa 0 4X, 0 = ax 9 

(3) equation of motion 

P 
aqx, t) a+, t) ----=-. 

at2 ax 

Using the notation 

u = u(m Ax, n At) m.n - 

(f-9 

(9) 

(10) 

(11) 

and central differences, (1) can be approximated as follows: 

%L,+1 - hlM2 + %&.n-1 _ 2 ~m+1.n - hn., + %-1.n 

At2 Ax2 (12) 

The criteria for stability and convergence require [8] that 

c At/Ax < 1. (13) 

For the sake of simplicity, the value 

c At/Ax = 1 (14) 

is preferred and used throughout this paper. Combining (12) and (14), therefore, 
leads to the expression 

U nz.n+1 = %-1.7% + %+1.n - ~?n*n-1 for n>l. (15) 

This is the required difference scheme for the interior points. 
Equation (15) is an explicit formula for the calculation of a single value on a 

new time step, n + 1, in terms of known values on the two previous steps, n and 
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n - 1. To start the marching process, the first two rows, y1 = 0 and n = 1, must 
be obtained from the prescribed initial values. Equation (2) gives 

u m,o = “em w. (16) 

Expressing (3) by central differences yields 

u m.1 = um-1 + 2dt gb m. (17) 

Setting n = 0 in (15) yields 

u rn,l = urn-LO + um+1,0 - (J?n,-1 . (18) 

To eliminate the fictitious term u,,-~ , one combines (17) and (18) to obtain 

(5 m,1 = Hum-1.0 + (Jm+1.0) + At & m* (19) 

Equations (15) (16), and (19) provide the necessary means for solving initial- 
value problems for interior points. 

Interface Boundary 

Consider an infinitely long bar with a single discontinuity, as shown in Fig. 2. 
The cross-sectional area and material properties are different on either side of the 
discontinuity. It is convenient to choose the coordinate system so that x = 0 is 
at the discontinuity. 

FIG. 2. Interface of a discontinuous bar. 

Equation (6) gives 

Hence 
u(O-, t) = u(Of, t). 

Equation (10) gives 

a2u(o-, t) = a2u(o+, t) 
at2 at2 * 

a22d(o-, t) au(O-, t) 
p1 at2 = ax 

(20) 

(21) 

(22) 
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and 

a%f(o’, t) = au@+, t) 
P2 at2 ax * 

Equations (21), (22), and (23) are then combined as follows: 

1 au(O-, t) 1 au(o+,t) 
Fl ax 

=- 
p2 ax . 

Equation (1) gives 

aw-, t) = 
at2 

c12 awe-, t) 
a9 

and 

awf, 0 = 
at2 

c22 avf, 0 
a2 . 

Equation (7) gives 

A,u(O-, t) = A,u(O+, t). 
Hence 

A ab(o+, t) 
1 

aqo-, t) = A 
at2 2 at2 . 

Equations (25), (26), and (28) are then combined as follows: 

A c 2 aw-, t) 
11 

= 
ax2 

A c 2 awe+, t) 
22 a2 . 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

Equations (24), (27), and (29) provide the relations of the stresses and their spatial 
derivatives at the discontinuity. 

For the difference solution, the spatial grids are chosen as shown in Fig. 3. 
The grid sizes depend on the wave velocities of the materials and the time increment, 
At, which is chosen by considering pulse shape and bar length. Equation (14) gives 

Ax, = Cl At (30) 
and 

Ax, = c2 At. (31) 

Equations (30) and (31) yield 

Ax,/Ax, = cl/c2 . (32) 
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FIG. 3. Difference grids. 

Using Taylor’s expansion for both sides of the interface and neglecting higher 
than second-order terms yields 

u-l,n = uO-,n -AX,gI 
0-,?I 

+;AX$I 
0-,?I 

and 

o+l,n = uo+,n + Ax, g 1 + ; Ax,2 g 1 ' 
0f.n Of,, 

Equation (34) can be expressed in terms of the left side values (0-, n) by 
incorporating (24), (27), and (29): 

(T+l,n 
Al =-,,,+Ax,~g/- +;Ax;*(~)2~I- * (35) 
A2 0 ,n 0 7% 

The first derivative in (35) may be eliminated by solving (33) and (35): 

=(T 
Al ---CT- 

+l,n A 0 
2 

3s 

Equations (25), (32), and (36) are then combined as follows: 

= u+l,n 
Al 

- -Jg uo-,71 - E bo-,n - ~-~,J. 

(36) 

Using (30) and central differences for the second derivative, (37) is rewritten 
as follows: 

2 2 
oo-,n+l = AlflCl U-1,7% +A ?-$(1+Lt!?E!&) 

U +1,n - uO-,n-l (38) 
1+- 

A2~2c2 2 AlPlG 
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where n > 1. This is the desired difference scheme for the interface boundary. 
Equation (38) is reduceable to (15) for m = 0 when the subscripts are equal, 
that is, when the discontinuity vanishes. 

The difference schemes for the initial time steps, in a manner similar to that 
demonstrated above for the interior-point case, can be shown as 

(39) 
and 

1 1 
or,1 = 

1+* 
u-l,o +A *+1,0 + At do-). (440) 

2P2 2 
$(1++$) 

2 1 

The values on the right side of the interface are given by (27) 

Al *o+,n = A, *o-,ra for y1 > 0. 

The complete difference method thus consists of (15), (16), and (19) for the 
interior points and (38), (39), (40), and (41) for the interface boundaries. 

ILLUSTRATIVE EXAMPLES 

In this section two illustrative examples are solved by the difference method 
and the results are compared with analytical and available experimental results; 
good agreements are shown in both cases. 

Stepped Bar 

For the sake of visualization, an example involving a bar with a single discon- 
tinuity in geometry and material was chosen. 

The bar is illustrated in Fig. 4. The properties of both sections are related as 
follows: 

A 1 -.A-=- 3-1 B-9 
A, 2’ E,-2’ p2-8’ 

P (1) --+ 
I 

(42) 

L-- L, =*Ax,-LL2=6hx2--J 

FIG. 4. Stepped bar. 
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Therefore, 
- Cl- Ax1 2 
Ax, =c,-3’ 

Moreover, the sectional lengths were chosen so that 

Ll SAX, 8 
L,=6dx,-9’ 

These relationships result in a randomly related transit-time interval: 

t1 L/Cl 4 -=-=3. 
t2 

The initial values were chosen as follows: 

f(x) = 0 for 0 < x < L (46) 

g(x) = 0 for 0 < x < L. (47) 

The end conditions were prescribed: 

P1(t) = [(y for 0 < t < 8At 
t 3 8At 

(43) 

(44) 

(45) 

(48) 

P2(t) = 0 for t > 0. w 

The uniform initial values and the rectangular input pulse were chosen for ease 
in verifying results rather than to simplify the problem. 

The difference solution was carried out as outlined previously; the results are 
shown in Fig. 5, where values at the interface, m = 8, are shown for the left side 
only. Since the transit-time intervals were not simply related, interaction of the 
wave fronts becomes more complicated at the later time steps. 

These results can be compared with results obtained by the ray-tracing method, 
which is easily applied to this simple problem. The familiar coefficients of reflection 
and transmission are as follows: 

*R 1 - &&42P2c2 GT 2 -= -= 
DI &1c1 ’ or 

l+A 
-4fG- * 

tiv+TGT) 

(50) 

2P2 2 1 2P2 2 

Thus, for right-bound waves 

-5% = 0 455 UT 
* , - = 0.727 

CI aI 
(51) 
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FIG. 5. Stress propagation in a stepped bar. 

and for left-bound waves 

CR - = -0.455, 
UI 

z = 1.091. (52) 

The results obtained by the ray-tracing method are identical to those obtained 
by the difference method: 

1000 --+ + -127 -455 -+ 

455+-+727 -793 +- + 331 -207++ -331 

The well-known results of reflection of stress waves at a free end are also evident 
in Fig. 5. 

Necked Rod 

For the second example, a case with two geometrical discontinuities was chosen. 
Experimental data were available for a necked rod studied by Beddoe [4], who 
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used strain gages to record tensile impact effects. The rod, with four gage locations, 
is illustrated in Fig. 6. The instrumentation was capable of simultaneously recording 
two gages only. The experimental data (Figs. 4 to 6 in [4]) chosen for the present 
study consist of strain records of Gage A together with one of the other gages B, C, 
and D. 

FIG 6. Necked rod. 

In the difference solution to this problem, since pr = p2 and c, = c2 , (38) became 

2 
uo-,n+l = 

1 + k/A 
(u-1,n + (J+1,?J - a,-,a-1. (53) 

Proper area ratios were used for the interfaces-in this case one was the reciprocal 
of the other. 

INPUT PULSE 

-EXPERIMENTAL 
D 

0 
X X XTHEORETICAL 

FIG 7. Comparison of results for necked rod. 
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Since the actual input pulse was unknown, the Gage A location was regarded 
as the end of the rod, and the Gage A readings were used as input pulse. From 
Gage A to the free end, the rod was divided into forty-two increments; and the 
strain histories at all grid points, including the gage locations, were computed. 
Using the experimentally determined input pulses (Gage A), the corresponding 
responses at Gages B, C, and D were computed. Good agreement between the 
experimental and theoretical results is readily shown in Fig. 7. 

DISCUSSION 

The explicit difference schemes require only two previous time lines to generate 
a new time line. To calculate an unknown value on a new time line, only three 
previous known values, lying on and within the characteristic lines, are required. 
Thus the marching method is simple enough to be amenable to hand computations. 
With a computer, thousands of spatial meshes and hundreds of discontinuities 
can be readily handled. 

The method, as presented, is restricted by the requirement that segments of the 
bar on two sides of an interface satisfy 

(54) 

where M is an integer representing the number of meshes in the bar segment. 
It is therefore implied that N is a rational number. To handle a more general case 
when N is an irrational number, there are two alternative approaches: (a) Choosing 
MC and Mi, large enough so that N is approximated to a desired accuracy. 
This is feasible because the method allows a large number of spatial meshes. 
(b) Choosing the mesh sizes such that c Lilt/Ax < 1. After the required modifi- 
cations in Equations (15) through (40), the difference solution would still satisfy 
the stability condition (13) while keeping the spatial meshes to a reasonable 
number. 

The difference method which has been used in the investigation of viscoelastic 
waves in a split Hopkinson pressure bar [9], is readily applicable to bars of greater 
complexity. Because of its ability to handle a large number of discontinuities, 
the difference method is highly suitable also for solving, by means of realistic 
incremental approximation, problems involving continuous change in physical 
properties such as the bars with a temperature gradient [lo]. On the other hand, 
the method is as good as the assumption that the elementary theory of the one- 
dimensional stress waves prevails. In the case of uniform bars the elementary 
theory is valid for waves with long wave lengths [2, 111. In the case of bars with 
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discontinuities the range of validity of the theory is expected to be more restricted 
as indicated by the experimental evidences [2-41. 
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